NF ISO 10767-1

NF ISO 10767-1

December 2015
Standard Current

Hydraulic fluid power - Determination of pressure ripple levels generated in systems and components - Part 1 : method for determining source flow ripple and source impedance of pumps

ISO 10767-1:2015 establishes a test procedure for measuring the source flow ripple and source impedance of positive-displacement hydraulic pumps. It is applicable to all types of positive-displacement pumps operating under steady-state conditions, irrespective of size, provided that the pumping frequency is in the range from 50 Hz to 400Hz. Source flow ripple causes fluid borne vibration (pressure ripple) and then airborne noise from hydraulic systems. This procedure covers a frequency range and pressure range that have been found to cause many circuits to emit airborne noise which presents a major difficulty in design of hydraulic fluid power systems. Once the source flow ripple and source impedance of hydraulic fluid power pump are known, the pressure ripple generated by the pump in the fluid power system can be calculated by computer simulation using the known ripple propagation characteristics of the system components. As such, this part of ISO 10767 allows the design of low noise fluid power systems to be realized by establishing a uniform procedure for measuring and reporting the source flow ripple and the source impedance characteristics of hydraulic fluid power pumps. In ISO 10767-1:2015, calculation is made for blocked acoustic pressure ripple as an example of the pressure ripple. An explanation of the methodology and theoretical basis for this test procedure is given in Annex B. The test procedure is referred to here as the two pressures/two systems method. Ratings are obtained as follows: a) source flow ripple (in the standard "Norton" model) amplitude, in cubic meter per second[m3/s], and phase, in degree, over 10 individual harmonics of pumping frequency; b) source flow ripple (in the modified model) amplitude, in cubic meter per second [m3/s], and phase, in degree, over 10 individual harmonics of pumping frequency; and its time history wave form, c) source impedance amplitude, in Newton second per meter to the power of five [(Ns)/m5]., and phase, in degree, over 10 individual harmonics of pumping frequency; d) blocked acoustic pressure ripple, in MPa (1 MPa = 106 Pa) or in bar (1 bar = 105 Pa), over 10 individual harmonics of pumping frequency; and the RMS average of the pressure ripple harmonic f1 to f10.

View the extract
Main informations

Collections

National standards and national normative documents

Publication date

December 2015

Number of pages

34 p.

Reference

NF ISO 10767-1

ICS Codes

23.100.10   Pumps and motors

Classification index

E48-390-1

Print number

1

International kinship

Sumary
Hydraulic fluid power - Determination of pressure ripple levels generated in systems and components - Part 1 : method for determining source flow ripple and source impedance of pumps

ISO 10767-1:2015 establishes a test procedure for measuring the source flow ripple and source impedance of positive-displacement hydraulic pumps. It is applicable to all types of positive-displacement pumps operating under steady-state conditions, irrespective of size, provided that the pumping frequency is in the range from 50 Hz to 400Hz.

Source flow ripple causes fluid borne vibration (pressure ripple) and then airborne noise from hydraulic systems. This procedure covers a frequency range and pressure range that have been found to cause many circuits to emit airborne noise which presents a major difficulty in design of hydraulic fluid power systems. Once the source flow ripple and source impedance of hydraulic fluid power pump are known, the pressure ripple generated by the pump in the fluid power system can be calculated by computer simulation using the known ripple propagation characteristics of the system components. As such, this part of ISO 10767 allows the design of low noise fluid power systems to be realized by establishing a uniform procedure for measuring and reporting the source flow ripple and the source impedance characteristics of hydraulic fluid power pumps.

In ISO 10767-1:2015, calculation is made for blocked acoustic pressure ripple as an example of the pressure ripple. An explanation of the methodology and theoretical basis for this test procedure is given in Annex B. The test procedure is referred to here as the two pressures/two systems method. Ratings are obtained as follows:

a) source flow ripple (in the standard "Norton" model) amplitude, in cubic meter per second[m3/s], and phase, in degree, over 10 individual harmonics of pumping frequency;

b) source flow ripple (in the modified model) amplitude, in cubic meter per second [m3/s], and phase, in degree, over 10 individual harmonics of pumping frequency; and its time history wave form,

c) source impedance amplitude, in Newton second per meter to the power of five [(Ns)/m5]., and phase, in degree, over 10 individual harmonics of pumping frequency;

d) blocked acoustic pressure ripple, in MPa (1 MPa = 106 Pa) or in bar (1 bar = 105 Pa), over 10 individual harmonics of pumping frequency; and the RMS average of the pressure ripple harmonic f1 to f10.

Replaced standards (1)
NF ISO 10767-1
September 1997
Standard Cancelled
Hydraulic fluid power. Détermination of pressure ripple levels generated in systems and components. Part 1 : precision method for pump.

Table of contents
View the extract
  • 1 Domaine d'application
  • 2 Référence normative
  • 3 Termes et définitions
  • 4 Instrumentation
  • 5 Installation de la pompe
  • 6 Conditions d'essai et réglage
  • 7 Montage d'essai
  • 8 Mode opératoire d'essai
  • 9 Rapport d'essai
  • 10 Phrase d'identification (Référence à la présente partie de l'ISO 10767)
  • Annexe A Formulaires d'essai
  • Annexe B Méthode des deux pressions/deux systèmes
  • Bibliographie
ZOOM ON ... the Requirements department
To comply with a standard, you need to quickly understand its issues in order to determine its impact on your activity.

The Requirements department helps you quickly locate within the normative text:
- mandatory clauses to satisfy,
- non-essential but useful clauses to know, such as permissions and recommendations.

The identification of these types of clauses is based on the document “ISO / IEC Directives, Part 2 - Principles and rules of structure and drafting of ISO documents ”as well as on a constantly enriched list of verbal forms.

With Requirements, quickly access the main part of the normative text!

With Requirements, quickly access the main part of the normative text!
What is the Redline format?
The Redline + service - standards comparator allows you to easily and simply identify major changes between the current standard and its last canceled version.

At a glance, you will be able to identify the additions, deletions or modifications to a text, table, figure and formula.
At a glance, you will be able to identify the additions, deletions or modifications to a text, table, figure and formula

The Redlines + service is offered to you on the collection of French standards in force, in French language and in HTML and PDF format.

For an overview of the service, click on View a standard in redline format
Need to identify, monitor and decipher standards?

COBAZ is the simple and effective solution to meet the normative needs related to your activity, in France and abroad.

Available by subscription, CObaz is THE modular solution to compose according to your needs today and tomorrow. Quickly discover CObaz!

Request your free, no-obligation live demo

I discover COBAZ