ISO 17109:2022
Surface chemical analysis - Depth profiling - Method for sputter rate determination in X-ray photoelectron spectroscopy, Auger electron spectroscopy and secondary-ion mass spectrometry sputter depth profiling using single and multi-layer thin films
This document specifies a method for the calibration of the sputtered depth of a material from a measurement of its sputtering rate under set sputtering conditions using a single- or multi-layer reference sample with layers of the same material as that requiring depth calibration. The method has a typical accuracy in the range of 5 % to 10 % for layers 20 nm to 200 nm thick when sputter depth profiled using AES, XPS and SIMS. The sputtering rate is determined from the layer thickness and the sputtering time between relevant interfaces in the reference sample and this is used with the sputtering time to give the thickness of the sample to be measured. The determined ion sputtering rate can be used for the prediction of ion sputtering rates for a wide range of other materials so that depth scales and sputtering times in those materials can be estimated through tabulated values of sputtering yields and atomic densities.
This document specifies a method for the calibration of the sputtered depth of a material from a measurement of its sputtering rate under set sputtering conditions using a single- or multi-layer reference sample with layers of the same material as that requiring depth calibration. The method has a typical accuracy in the range of 5 % to 10 % for layers 20 nm to 200 nm thick when sputter depth profiled using AES, XPS and SIMS. The sputtering rate is determined from the layer thickness and the sputtering time between relevant interfaces in the reference sample and this is used with the sputtering time to give the thickness of the sample to be measured. The determined ion sputtering rate can be used for the prediction of ion sputtering rates for a wide range of other materials so that depth scales and sputtering times in those materials can be estimated through tabulated values of sputtering yields and atomic densities.
ISO 17109:2015 specifies a method for the calibration of the sputtered depth of a material from a measurement of its sputtering rate under set sputtering conditions using a single- or multi-layer reference sample with layers of the same material as that requiring depth calibration. The method has a typical accuracy in the range 5 % to 10 % for layers 20 nm to 200 nm thick when sputter depth profiled using AES, XPS, and SIMS. The sputtering rate is determined from the layer thickness and the sputtering time between relevant interfaces in the reference sample and this is used with the sputtering time to give the thickness of the sample to be measured. The determined ion sputtering rate can be used for the prediction of ion sputtering rates for a wide range of other materials so that depth scales and sputtering times in those materials can be estimated through tabulated values of sputtering yields and atomic densities.
The Requirements department helps you quickly locate within the normative text:
- mandatory clauses to satisfy,
- non-essential but useful clauses to know, such as permissions and recommendations.
The identification of these types of clauses is based on the document “ISO / IEC Directives, Part 2 - Principles and rules of structure and drafting of ISO documents ”as well as on a constantly enriched list of verbal forms.
With Requirements, quickly access the main part of the normative text!

COBAZ is the simple and effective solution to meet the normative needs related to your activity, in France and abroad.
Available by subscription, CObaz is THE modular solution to compose according to your needs today and tomorrow. Quickly discover CObaz!
Request your free, no-obligation live demo
I discover COBAZ