IEC/IEEE 62704-3:2017
Determining the peak spatial-average specific absorption rate (SAR) in the human body from wireless communications devices, 30 MHz to 6 GHz - Part 3: Specific requirements for using the finite difference time domain (FDTD) method for SAR calculations of mobile phones
IEC/IEEE 62704-3:2017 defines the concepts, techniques, benchmark phone models, validation procedures, uncertainties and limitations of the finite difference time domain (FDTD) technique when used for determining the peak spatial-average specific absorption rate (SAR) in standardized head and body phantoms exposed to the electromagnetic fields generated by wireless communication devices, in particular pre-compliance assessment of mobile phones, in the frequency range from 30 MHz to 6 GHz. It recommends and provides guidance on the numerical modelling of mobile phones and benchmark results to verify the general approach for the numerical simulations of such devices. It defines acceptable modelling requirements, guidance on meshing and test positions of the mobile phone and the phantom models.This document does not recommend specific SAR limits since these are found in other documents, e.g. IEEE C95.1-2005 and ICNIRPKey words: Mobile Phone, Spatial-Average Specific Absorption Rate, Finite-Difference Time-Domain, Human Body
IEC/IEEE 62704-3:2017 defines the concepts, techniques, benchmark phone models, validation procedures, uncertainties and limitations of the finite difference time domain (FDTD) technique when used for determining the peak spatial-average specific absorption rate (SAR) in standardized head and body phantoms exposed to the electromagnetic fields generated by wireless communication devices, in particular pre-compliance assessment of mobile phones, in the frequency range from 30 MHz to 6 GHz. It recommends and provides guidance on the numerical modelling of mobile phones and benchmark results to verify the general approach for the numerical simulations of such devices. It defines acceptable modelling requirements, guidance on meshing and test positions of the mobile phone and the phantom models.
This document does not recommend specific SAR limits since these are found in other documents, e.g. IEEE C95.1-2005 and ICNIRP
Key words: Mobile Phone, Spatial-Average Specific Absorption Rate, Finite-Difference Time-Domain, Human Body
COBAZ is the simple and effective solution to meet the normative needs related to your activity, in France and abroad.
Available by subscription, CObaz is THE modular solution to compose according to your needs today and tomorrow. Quickly discover CObaz!
Request your free, no-obligation live demo
I discover COBAZ