ISO 8769:2020

ISO 8769:2020

June 2020
International standard Current

Measurement of radioactivity - Alpha-, beta- and photon emitting radionuclides - Reference measurement standard specifications for the calibration of surface contamination monitors

This document specifies the characteristics of reference measurement standards of radioactive surface contamination, traceable to national measurement standards, for the calibration of surface contamination monitors. This document relates to alpha-emitters, beta-emitters, and photon emitters of maximum photon energy not greater than 1,5 MeV.It does not describe the procedures involved in the use of these reference measurement standards for the calibration of surface contamination monitors. Such procedures are specified in IEC 60325[6], IEC 62363[7], and other documents.NOTE Since some of the proposed photon standards include filters, the photon standards are to be regarded as reference measurement standards of photons of a particular energy range and not as reference measurement standards of a particular radionuclide. For example, a 241Am source with the recommended filtration does not emit from the surface the alpha particles or characteristic low-energy L X-ray photons associated with the decay of the nuclide. It is designed to be a reference measurement standard that emits photons with an average energy of approximately 60 keV.This document also specifies preferred reference radiations for the calibration of surface contamination monitors. These reference radiations are realized in the form of adequately characterized large area sources specified, without exception, in terms of surface emission rate and activity which are traceable to national standards.

View the extract
Main informations

Collections

International ISO standards

Publication date

June 2020

Number of pages

13 p.

Reference

ISO 8769:2020

ICS Codes

17.240   Radiation measurements

Print number

1
Sumary
Measurement of radioactivity - Alpha-, beta- and photon emitting radionuclides - Reference measurement standard specifications for the calibration of surface contamination monitors

This document specifies the characteristics of reference measurement standards of radioactive surface contamination, traceable to national measurement standards, for the calibration of surface contamination monitors. This document relates to alpha-emitters, beta-emitters, and photon emitters of maximum photon energy not greater than 1,5 MeV.

It does not describe the procedures involved in the use of these reference measurement standards for the calibration of surface contamination monitors. Such procedures are specified in IEC 60325[6], IEC 62363[7], and other documents.

NOTE Since some of the proposed photon standards include filters, the photon standards are to be regarded as reference measurement standards of photons of a particular energy range and not as reference measurement standards of a particular radionuclide. For example, a 241Am source with the recommended filtration does not emit from the surface the alpha particles or characteristic low-energy L X-ray photons associated with the decay of the nuclide. It is designed to be a reference measurement standard that emits photons with an average energy of approximately 60 keV.

This document also specifies preferred reference radiations for the calibration of surface contamination monitors. These reference radiations are realized in the form of adequately characterized large area sources specified, without exception, in terms of surface emission rate and activity which are traceable to national standards.

Replaced standards (1)
ISO 8769:2016
January 2016
International standard Cancelled
Reference sources - Calibration of surface contamination monitors - Alpha-, beta- and photon emitters

ISO 8769:2016 specifies the characteristics of reference sources of radioactive surface contamination, traceable to national measurement standards, for the calibration of surface contamination monitors. This International Standard relates to alpha-emitters, beta-emitters, and photon emitters of maximum photon energy not greater than 1,5 MeV. It does not describe the procedures involved in the use of these reference sources for the calibration of surface contamination monitors. Such procedures are specified in IEC 60325[8], IEC 62363[9], and other documents. NOTE Since some of the proposed photon sources include filters, the photon sources are to be regarded as sources of photons of a particular energy range and not as sources of a particular radionuclide. For example, a 241Am source with the recommended filtration does not emit from the surface the alpha particles or characteristic low-energy L X-ray photons associated with the decay of the nuclide. It is designed to be a source that emits photons with an average energy of approximately 60 keV. ISO 8769:2016 also specifies preferred reference radiations for the calibration of surface contamination monitors. These reference radiations are realized in the form of adequately characterized large area sources specified, without exception, in terms of surface emission rates which are traceable to national standards.

What is the Redline format?
The Redline + service - standards comparator allows you to easily and simply identify major changes between the current standard and its last canceled version.

At a glance, you will be able to identify the additions, deletions or modifications to a text, table, figure and formula.
At a glance, you will be able to identify the additions, deletions or modifications to a text, table, figure and formula

The Redlines + service is offered to you on the collection of French standards in force, in French language and in HTML and PDF format.

For an overview of the service, click on View a standard in redline format
Need to identify, monitor and decipher standards?

COBAZ is the simple and effective solution to meet the normative needs related to your activity, in France and abroad.

Available by subscription, CObaz is THE modular solution to compose according to your needs today and tomorrow. Quickly discover CObaz!

Request your free, no-obligation live demo

I discover COBAZ