NF EN ISO 4037-3

NF EN ISO 4037-3

February 2021
Standard Current

Radiological protection - X and gamma reference radiation for calibrating dosemeters and doserate meters and for determining their response as a function of photon energy - Part 3 : calibration of area and personal dosemeters and the measurement of their response as a function of energy and angle of incidence

This document specifies additional procedures and data for the calibration of dosemeters and doserate meters used for individual and area monitoring in radiation protection. The general procedure for the calibration and the determination of the response of radiation protection dose(rate)meters is described in ISO 29661 and is followed as far as possible. For this purpose, the photon reference radiation fields with mean energies between 8 keV and 9 MeV, as specified in ISO 4037-1, are used. In Annex D some additional information on reference conditions, required standard test conditions and effects associated with electron ranges are given. For individual monitoring, both whole body and extremity dosemeters are covered and for area monitoring, both portable and installed dose(rate)meters are covered.Charged particle equilibrium is needed for the reference fields although this is not always established in the workplace fields for which the dosemeter should be calibrated. This is especially true at photon energies without inherent charged particle equilibrium at the reference depth d, which depends on the actual combination of energy and reference depth d. Electrons of energies above 65 keV, 0,75 MeV and 2,1 MeV can just penetrate 0,07 mm, 3 mm and 10 mm of ICRU tissue, respectively, and the radiation qualities with photon energies above these values are considered as radiation qualities without inherent charged particle equilibrium for the quantities defined at these depths. This document also deals with the determination of the response as a function of photon energy and angle of radiation incidence. Such measurements can represent part of a type test in the course of which the effect of further influence quantities on the response is examined.This document is only applicable for air kerma rates above 1 µGy/h.This document does not cover the in-situ calibration of fixed installed area dosemeters.The procedures to be followed for the different types of dosemeters are described. Recommendations are given on the phantom to be used and on the conversion coefficients to be applied. Recommended conversion coefficients are only given for matched reference radiation fields, which are specified in ISO 4037-1:2019, Clauses 4 to 6. ISO 4037‑1:2019, Annexes A and B, both informative, include fluorescent radiations, the gamma radiation of the radionuclide 241Am, S-Am, for which detailed published information is not available. ISO 4037-1:2019, Annex C, gives additional X radiation fields, which are specified by the quality index. For all these radiation qualities, conversion coefficients are given in Annexes A to C, but only as a rough estimate as the overall uncertainty of these conversion coefficients in practical reference radiation fields is not known.NOTE The term dosemeter is used as a generic term denoting any dose or doserate meter for individual or area monitoring.

View the extract
Main informations

Collections

National standards and national normative documents

Publication date

February 2021

Number of pages

78 p.

Reference

NF EN ISO 4037-3

ICS Codes

17.240   Radiation measurements

Classification index

M60-512-3

Print number

1

International kinship

European kinship

EN ISO 4037-3:2021
Sumary
Radiological protection - X and gamma reference radiation for calibrating dosemeters and doserate meters and for determining their response as a function of photon energy - Part 3 : calibration of area and personal dosemeters and the measurement of their response as a function of energy and angle of incidence

This document specifies additional procedures and data for the calibration of dosemeters and doserate meters used for individual and area monitoring in radiation protection. The general procedure for the calibration and the determination of the response of radiation protection dose(rate)meters is described in ISO 29661 and is followed as far as possible. For this purpose, the photon reference radiation fields with mean energies between 8 keV and 9 MeV, as specified in ISO 4037-1, are used. In Annex D some additional information on reference conditions, required standard test conditions and effects associated with electron ranges are given. For individual monitoring, both whole body and extremity dosemeters are covered and for area monitoring, both portable and installed dose(rate)meters are covered.

Charged particle equilibrium is needed for the reference fields although this is not always established in the workplace fields for which the dosemeter should be calibrated. This is especially true at photon energies without inherent charged particle equilibrium at the reference depth d, which depends on the actual combination of energy and reference depth d. Electrons of energies above 65 keV, 0,75 MeV and 2,1 MeV can just penetrate 0,07 mm, 3 mm and 10 mm of ICRU tissue, respectively, and the radiation qualities with photon energies above these values are considered as radiation qualities without inherent charged particle equilibrium for the quantities defined at these depths. This document also deals with the determination of the response as a function of photon energy and angle of radiation incidence. Such measurements can represent part of a type test in the course of which the effect of further influence quantities on the response is examined.

This document is only applicable for air kerma rates above 1 µGy/h.

This document does not cover the in-situ calibration of fixed installed area dosemeters.

The procedures to be followed for the different types of dosemeters are described. Recommendations are given on the phantom to be used and on the conversion coefficients to be applied. Recommended conversion coefficients are only given for matched reference radiation fields, which are specified in ISO 4037-1:2019, Clauses 4 to 6. ISO 4037‑1:2019, Annexes A and B, both informative, include fluorescent radiations, the gamma radiation of the radionuclide 241Am, S-Am, for which detailed published information is not available. ISO 4037-1:2019, Annex C, gives additional X radiation fields, which are specified by the quality index. For all these radiation qualities, conversion coefficients are given in Annexes A to C, but only as a rough estimate as the overall uncertainty of these conversion coefficients in practical reference radiation fields is not known.

NOTE The term dosemeter is used as a generic term denoting any dose or doserate meter for individual or area monitoring.

Replaced standards (1)
NF ISO 4037-3
June 2019
Standard Cancelled
Radiological - X and gamma reference radiation for calibrating dosemeters and doserate meters and for determining their response as a function of photon energy - Part 3 : calibration of area and personal dosemeters and the measurement of their response as a function of energy and angle of incidence

This document specifies additional procedures and data for the calibration of dosemeters and doserate meters used for individual and area monitoring in radiation protection. The general procedure for the calibration and the determination of the response of radiation protection dose(rate)meters is described in ISO 29661 and is followed as far as possible. For this purpose, the photon reference radiation fields with mean energies between 8 keV and 9 MeV, as specified in ISO 4037-1, are used. In Annex D some additional information on reference conditions, required standard test conditions and effects associated with electron ranges are given. For individual monitoring, both whole body and extremity dosemeters are covered and for area monitoring, both portable and installed dose(rate)meters are covered. Charged particle equilibrium is needed for the reference fields although this is not always established in the workplace fields for which the dosemeter should be calibrated. This is especially true at photon energies without inherent charged particle equilibrium at the reference depth d, which depends on the actual combination of energy and reference depth d. Electrons of energies above 65 keV, 0,75 MeV and 2,1 MeV can just penetrate 0,07 mm, 3 mm and 10 mm of ICRU tissue, respectively, and the radiation qualities with photon energies above these values are considered as radiation qualities without inherent charged particle equilibrium for the quantities defined at these depths. This document also deals with the determination of the response as a function of photon energy and angle of radiation incidence. Such measurements can represent part of a type test in the course of which the effect of further influence quantities on the response is examined. This document is only applicable for air kerma rates above 1 µGy/h. This document does not cover the in-situ calibration of fixed installed area dosemeters. The procedures to be followed for the different types of dosemeters are described. Recommendations are given on the phantom to be used and on the conversion coefficients to be applied. Recommended conversion coefficients are only given for matched reference radiation fields, which are specified in ISO 4037-1:2019, Clauses 4 to 6. ISO 4037‑1:2019, Annexes A and B, both informative, include fluorescent radiations, the gamma radiation of the radionuclide 241Am, S-Am, for which detailed published information is not available. ISO 4037-1:2019, Annex C, gives additional X radiation fields, which are specified by the quality index. For all these radiation qualities, conversion coefficients are given in Annexes A to C, but only as a rough estimate as the overall uncertainty of these conversion coefficients in practical reference radiation fields is not known. NOTE The term dosemeter is used as a generic term denoting any dose or doserate meter for individual or area monitoring.

Table of contents
  • 1 Domaine d'application
  • 2 Références normatives
  • 3 Termes et définitions
  • 4 Procédures applicables à tous les dosimètres, individuels et de zone
  • 5 Procédures particulières aux dosimètres de zone
  • 6 Coefficients de conversion pour la dosimétrie de zone
  • 7 Procédures particulières aux dosimètres individuels
  • 8 Coefficients de conversion pour la dosimétrie individuelle
  • 9 Incertitudes
  • Annexe A (informative) Coefficients de conversion estimés pour le rayonnement X de fluorescence
  • Annexe B (informative) Coefficients de conversion estimés pour un rayonnement gamma émis par le radionucléide 241 Am
  • Annexe C (informative) Coefficients de conversion estimés pour des rayonnements X filtrés en continu fondés sur l'indice de qualité
  • Annexe D (informative) Informations supplémentaires
  • Bibliographie
ZOOM ON ... the Requirements department
To comply with a standard, you need to quickly understand its issues in order to determine its impact on your activity.

The Requirements department helps you quickly locate within the normative text:
- mandatory clauses to satisfy,
- non-essential but useful clauses to know, such as permissions and recommendations.

The identification of these types of clauses is based on the document “ISO / IEC Directives, Part 2 - Principles and rules of structure and drafting of ISO documents ”as well as on a constantly enriched list of verbal forms.

With Requirements, quickly access the main part of the normative text!

With Requirements, quickly access the main part of the normative text!
What is the Redline format?
The Redline + service - standards comparator allows you to easily and simply identify major changes between the current standard and its last canceled version.

At a glance, you will be able to identify the additions, deletions or modifications to a text, table, figure and formula.
At a glance, you will be able to identify the additions, deletions or modifications to a text, table, figure and formula

The Redlines + service is offered to you on the collection of French standards in force, in French language and in HTML and PDF format.

For an overview of the service, click on View a standard in redline format
Need to identify, monitor and decipher standards?

COBAZ is the simple and effective solution to meet the normative needs related to your activity, in France and abroad.

Available by subscription, CObaz is THE modular solution to compose according to your needs today and tomorrow. Quickly discover CObaz!

Request your free, no-obligation live demo

I discover COBAZ