NF ISO 6980-2

NF ISO 6980-2

December 2023
Standard Current

Nuclear energy - Reference beta-particle radiation - Part 2 : calibration fundamentals related to basic quantities characterizing the radiation field

This document specifies methods for the measurement of the absorbed-dose rate in a tissue-equivalent slab phantom in the ISO 6980 reference beta-particle radiation fields. The energy range of the beta-particle-emitting isotopes covered by these reference radiations is 0,22 MeV to 3,6 MeV maximum beta energy corresponding to 0,07 MeV to 1,2 MeV mean beta energy. Radiation energies outside this range are beyond the scope of this document. While measurements in a reference geometry (depth of 0,07 mm or 3 mm at perpendicular incidence in a tissue‑equivalent slab phantom) with an extrapolation chamber used as primary standard are dealt with in detail, the use of other measurement systems and measurements in other geometries are also described, although in less detail. However, as noted in ICRU 56, the ambient dose equivalent, H*(10), used for area monitoring, and the personal dose equivalent, Hp(10), as used for individual monitoring, of strongly penetrating radiation, are not appropriate quantities for any beta radiation, even that which penetrates 10 mm of tissue (Emax > 2 MeV).This document is intended for those organizations wishing to establish primary dosimetry capabilities for beta particles and serves as a guide to the performance of dosimetry with an extrapolation chamber used as primary standard for beta‑particle dosimetry in other fields. Guidance is also provided on the statement of measurement uncertainties.

View the extract
Main informations

Collections

National standards and national normative documents

Publication date

December 2023

Number of pages

52 p.

Reference

NF ISO 6980-2

ICS Codes

17.240   Radiation measurements

Classification index

M60-515-2

Print number

2 - 01/03/2024

International kinship

Sumary
Nuclear energy - Reference beta-particle radiation - Part 2 : calibration fundamentals related to basic quantities characterizing the radiation field

This document specifies methods for the measurement of the absorbed-dose rate in a tissue-equivalent slab phantom in the ISO 6980 reference beta-particle radiation fields. The energy range of the beta-particle-emitting isotopes covered by these reference radiations is 0,22 MeV to 3,6 MeV maximum beta energy corresponding to 0,07 MeV to 1,2 MeV mean beta energy. Radiation energies outside this range are beyond the scope of this document. While measurements in a reference geometry (depth of 0,07 mm or 3 mm at perpendicular incidence in a tissue‑equivalent slab phantom) with an extrapolation chamber used as primary standard are dealt with in detail, the use of other measurement systems and measurements in other geometries are also described, although in less detail. However, as noted in ICRU 56, the ambient dose equivalent, H*(10), used for area monitoring, and the personal dose equivalent, Hp(10), as used for individual monitoring, of strongly penetrating radiation, are not appropriate quantities for any beta radiation, even that which penetrates 10 mm of tissue (Emax > 2 MeV).

This document is intended for those organizations wishing to establish primary dosimetry capabilities for beta particles and serves as a guide to the performance of dosimetry with an extrapolation chamber used as primary standard for beta‑particle dosimetry in other fields. Guidance is also provided on the statement of measurement uncertainties.

Replaced standards (1)
NF ISO 6980-2
January 2023
Standard Cancelled
Nuclear energy - Reference beta-particle radiation - Part 2: Calibration fundamentals related to basic quantities characterizing the radiation field

This document specifies methods for the measurement of the absorbed-dose rate in a tissue-equivalent slab phantom in the ISO 6980 reference beta-particle radiation fields. The energy range of the beta-particle-emitting isotopes covered by these reference radiations is 0,22 MeV to 3,6 MeV maximum beta energy corresponding to 0,06 MeV to 1,1 MeV mean beta energy. Radiation energies outside this range are beyond the scope of this document. While measurements in a reference geometry (depth of 0,07 mm or 3 mm at perpendicular incidence in a tissue‑equivalent slab phantom) with an extrapolation chamber used as primary standard are dealt with in detail, the use of other measurement systems and measurements in other geometries are also described, although in less detail. However, as noted in ICRU 56[5], the ambient dose equivalent, H*(10), used for area monitoring, and the personal dose equivalent, Hp(10), as used for individual monitoring, of strongly penetrating radiation, are not appropriate quantities for any beta radiation, even that which penetrates 10 mm of tissue (Emax > 2 MeV). This document is intended for those organizations wishing to establish primary dosimetry capabilities for beta particles and serves as a guide to the performance of dosimetry with an extrapolation chamber used as primary standard for beta‑particle dosimetry in other fields. Guidance is also provided on the statement of measurement uncertainties.

Table of contents
  • 1 Domaine d'application
  • 2 Références normatives
  • 3 Termes et définitions
  • 4 Symboles et abréviations; conditions de référence et conditions normales d'essai
  • 5 Étalonnage et traçabilité des champs de rayonnement de référence
  • 6 Principes généraux relatifs à l'étalonnage de champs de rayonnement bêta
  • 7 Modes opératoires d'étalonnage avec une chambre à extrapolation
  • 8 Étalonnages avec des chambres d'ionisation
  • 9 Mesurages sous incidence non perpendiculaire
  • 10 Incertitudes
  • Annexe A Conditions de référence et conditions normales d'essai
  • Annexe B Mesurages avec une chambre à extrapolation
  • Annexe C Facteurs de correction des mesures réalisées avec une chambre à extrapolation
  • Annexe D Exemple d'une analyse d'incertitude
  • Bibliographie
ZOOM ON ... the Requirements department
To comply with a standard, you need to quickly understand its issues in order to determine its impact on your activity.

The Requirements department helps you quickly locate within the normative text:
- mandatory clauses to satisfy,
- non-essential but useful clauses to know, such as permissions and recommendations.

The identification of these types of clauses is based on the document “ISO / IEC Directives, Part 2 - Principles and rules of structure and drafting of ISO documents ”as well as on a constantly enriched list of verbal forms.

With Requirements, quickly access the main part of the normative text!

With Requirements, quickly access the main part of the normative text!
What is the Redline format?
The Redline + service - standards comparator allows you to easily and simply identify major changes between the current standard and its last canceled version.

At a glance, you will be able to identify the additions, deletions or modifications to a text, table, figure and formula.
At a glance, you will be able to identify the additions, deletions or modifications to a text, table, figure and formula

The Redlines + service is offered to you on the collection of French standards in force, in French language and in HTML and PDF format.

For an overview of the service, click on View a standard in redline format
Need to identify, monitor and decipher standards?

COBAZ is the simple and effective solution to meet the normative needs related to your activity, in France and abroad.

Available by subscription, CObaz is THE modular solution to compose according to your needs today and tomorrow. Quickly discover CObaz!

Request your free, no-obligation live demo

I discover COBAZ