NF ISO 17733

NF ISO 17733

March 2016
Standard Current

Workplace air - Determination of mercury and inorganic mercury compounds - Method by cold-vapour atomic absorption spectrometry or atomic fluorescence spectrometry

ISO 17733:2015 specifies a procedure for determination of the time-weighted average mass concentration of mercury vapour and inorganic mercury compounds in workplace air. Mercury vapour is collected on a solid sorbent using either a diffusive badge or a pumped sorbent tube. Particulate inorganic mercury compounds, if present, are collected on a quartz fibre filter. Samples are analysed using either cold vapour atomic absorption spectrometry (CVAAS) or cold vapour atomic fluorescence spectrometry (CVAFS) after acid dissolution of the mercury collected.This International Standard is applicable to the assessment of personal exposure to mercury vapour and/or particulate inorganic mercury compounds in air for comparison with long-term or short-term exposure limits for mercury and inorganic mercury compounds and for static (area) sampling.The lower limit of the working range of the procedure is the quantification limit. This is determined by the sampling and analysis methods selected by the user, but it is typically in the range 0,01 µg to 0,04 µg of mercury (see 13.1). The upper limit of the working range of the procedure is determined by the capacity of the diffusive badge, sorbent tube or filter used for sample collection, but it is at least 30 µg of mercury (see 13.2). The concentration range of mercury in air for which this International Standard is applicable is determined in part by the sampling method selected by the user, but it is also dependent on the air sample volume.The diffusive badge method is not applicable to measurements of mercury vapour when chlorine is present in the atmosphere, e.g. in chloralkali works, but chlorine does not interfere with the pumped sorbent tube method (see 13.12.1). Gaseous organomercury compounds could cause a positive interference in the measurement of mercury vapour (see 13.12.2). Similarly, particulate organomercury compounds and gaseous organomercury compounds adsorbed onto airborne particles could cause a positive interference in the measurement of particulate inorganic mercury compounds (see 13.12.3).

View the extract
Main informations

Collections

National standards and national normative documents

Thematics

Gestion des risques et SST

Publication date

March 2016

Number of pages

62 p.

Reference

NF ISO 17733

ICS Codes

13.040.30   Workplace atmospheres

Classification index

X43-205

Print number

1

International kinship

Sumary
Workplace air - Determination of mercury and inorganic mercury compounds - Method by cold-vapour atomic absorption spectrometry or atomic fluorescence spectrometry

ISO 17733:2015 specifies a procedure for determination of the time-weighted average mass concentration of mercury vapour and inorganic mercury compounds in workplace air. Mercury vapour is collected on a solid sorbent using either a diffusive badge or a pumped sorbent tube. Particulate inorganic mercury compounds, if present, are collected on a quartz fibre filter. Samples are analysed using either cold vapour atomic absorption spectrometry (CVAAS) or cold vapour atomic fluorescence spectrometry (CVAFS) after acid dissolution of the mercury collected.

This International Standard is applicable to the assessment of personal exposure to mercury vapour and/or particulate inorganic mercury compounds in air for comparison with long-term or short-term exposure limits for mercury and inorganic mercury compounds and for static (area) sampling.

The lower limit of the working range of the procedure is the quantification limit. This is determined by the sampling and analysis methods selected by the user, but it is typically in the range 0,01 µg to 0,04 µg of mercury (see 13.1). The upper limit of the working range of the procedure is determined by the capacity of the diffusive badge, sorbent tube or filter used for sample collection, but it is at least 30 µg of mercury (see 13.2). The concentration range of mercury in air for which this International Standard is applicable is determined in part by the sampling method selected by the user, but it is also dependent on the air sample volume.

The diffusive badge method is not applicable to measurements of mercury vapour when chlorine is present in the atmosphere, e.g. in chloralkali works, but chlorine does not interfere with the pumped sorbent tube method (see 13.12.1). Gaseous organomercury compounds could cause a positive interference in the measurement of mercury vapour (see 13.12.2). Similarly, particulate organomercury compounds and gaseous organomercury compounds adsorbed onto airborne particles could cause a positive interference in the measurement of particulate inorganic mercury compounds (see 13.12.3).

Replaced standards (1)
NF ISO 17733
June 2005
Standard Cancelled
Workplace air - Determination of mercury and inorganic mercury compounds - Method by cold-vapour atomic absorption spectrometry or atomic fluorescence spectrometry

Le présent document spécifie une méthode de détermination de la concentration en masse moyenne pondérée en temps des vapeurs de mercure et des composés particulaires de mercure minéral dans l'air des lieux de travail, par spectrométrie d'absorption atomique de vapeur froide (signe anglais : CVAAS) ou par spectrométrie de fluorescence atomique de vapeur froide (signe anglais : CVAFS)

Table of contents
  • 1 Domaine d'application
  • 2 Références normatives
  • 3 Termes et définitions
  • 4 Principe
  • 5 Interférences
  • 6 Exigences
  • 7 Réactifs
  • 8 Appareillage
  • 9 Évaluation de l'exposition professionnelle
  • 10 Prélèvement
  • 11 Analyse
  • 12 Expression des résultats
  • 13 Performances de la méthode
  • 14 Rapport d'essai
  • Annexe A Préconisations concernant la sélection d'une méthode de prélèvement de la vapeur de mercure
  • Annexe B Corrections de température et de pression
  • Bibliographie
ZOOM ON ... the Requirements department
To comply with a standard, you need to quickly understand its issues in order to determine its impact on your activity.

The Requirements department helps you quickly locate within the normative text:
- mandatory clauses to satisfy,
- non-essential but useful clauses to know, such as permissions and recommendations.

The identification of these types of clauses is based on the document “ISO / IEC Directives, Part 2 - Principles and rules of structure and drafting of ISO documents ”as well as on a constantly enriched list of verbal forms.

With Requirements, quickly access the main part of the normative text!

With Requirements, quickly access the main part of the normative text!
What is the Redline format?
The Redline + service - standards comparator allows you to easily and simply identify major changes between the current standard and its last canceled version.

At a glance, you will be able to identify the additions, deletions or modifications to a text, table, figure and formula.
At a glance, you will be able to identify the additions, deletions or modifications to a text, table, figure and formula

The Redlines + service is offered to you on the collection of French standards in force, in French language and in HTML and PDF format.

For an overview of the service, click on View a standard in redline format
Need to identify, monitor and decipher standards?

COBAZ is the simple and effective solution to meet the normative needs related to your activity, in France and abroad.

Available by subscription, CObaz is THE modular solution to compose according to your needs today and tomorrow. Quickly discover CObaz!

Request your free, no-obligation live demo

I discover COBAZ